ANALYZING GENDER AND DEPARTMENTAL INFLUENCE ON CLASSROOM TECHNOLOGY USAGE: A MULTIVARIATE APPROACH

¹Edlyn Sanchez Santander, ²Menie Jumawan Dagala

Siqujior State College, Philippine.

Email: essantander@siquijorstate.edu.ph, mjdagala@siquijosrtate.edu.ph

ABSTRACT: The usage of ICT in the classroom and how much of an influence students' perceptions have on their learning are key elements in determining how ICT will affect students in the future. This study examines if there are differences between gender and department in how students perceive the use of technology in the classroom and the degree of their influence. In this survey, 266 Siquijor State College students took part, representing a variety of colleges/departments. The study analyzed the relationship between department, gender, and student perception using a two-way factorial MANOVA. The questionnaire on Learners' Use of Technology from Prof. Anup Kumar Das and Sanjaya Mishra contains several statements that assess the perception of technology use and the amount to which learners' perceptions of technology have an influence. Results indicate that female students and students from the College of Arts and Sciences have greater perceptions of how technology is used in academics. However, when it comes to the degree to which students perceive the use of technology in the classroom, male respondents and students from the College of Criminal Justice Education have the highest mean.

Keywords: MANOVA, TECHNOLOGY, PERCEPTION, EXTENT OF IMPACT, ICT

I. INTRODUCTION

ICT is an essential tool in the digital age because it offers rapid and effective ways to access, connect to, and learn from dynamic data, which improves students' problem-solving skills. Students' learning experiences are improved when technology is used in the classroom because it strengthens the bonds between teachers and students and enhances teaching strategies [1]. There was an apparent difference in the perceptions of students from all departments and genders about technology usage in their studies and classes at Siquijor State College. While some departments completely embrace technology, others rely on conventional methods, which raises issues about its overall impact on learning, according to observations made in classrooms and through personal encounters with students.

This study examines the differences in perceptions of technology usage in the classroom and how it affects students' learning by department and gender. To better understand how students use technology, studies must consider these interrelated elements, as human behavior is multidimensional. In doing so, this study offers a framework for evaluating how students study technology and how common it is in classrooms.

2. METHODOLOGY

The goal of this study is to ascertain whether there is a connection between gender and department characteristics, students' perception of technology, and the extent of the impact of learners' perception of technology used in the classroom. A two-way factorial MANOVA (Multivariate analysis of variance) will give the investigation's phenomena a rich context for exploration. Utilizing a multivariate method will enable the assessment of the relationship between age and department. ANOVA will also be used to assess the strength of a link between two variables.

Context and Sample

The survey was conducted at Siquijor State College during the second semester. The information required is answered through the research questions present in the survey data. Both an online and a paper survey were used to administer the survey. The researchers used a standardized research questionnaire for data collection- the questionnaire on Learners' Use of Technology. The researchers asked permission from the authors, namely Anup Kumar Das and Sanjaya Mishra [2], to utilize the questionnaire for the said research.

Two hundred sixty – six (266) students from various sections of Siquijor State College took part in the study. While protecting participant identity and information confidentiality, the researchers presented an overview of the goals and issues of the research. Individuals completed a consent form before starting the survey, expressing their participation with informed consent. Table 1 displays the sample of the respondents, which was spread out according to their age and department of responders.

 Table 1. Frequencies and Percentages According to the

 Variables of the Study

	Categories	Frequency	Percentage
Gender Total Department	Male	131	49.25
Gender	Female	135	50.75
Total		266	100
	COT	34	12.78
	CBM	86	32.33
Gender Mal Fema Total CO CBM CAS CCJ COI ME	CAS	25	9.4
Department	CCJE	40	15.04
	COE	32	12.03
	MEP	49	18.42
Total		266	100

Measures

This study concentrated on four variables: gender, department, perception of the use of technology in studies, and the extent of the impact of learners' perception of technology used in the classroom. The first variable, gender was measured by the participant's gender (1= Male, 2= Female).

The respondents' college or department was the second variable the poll assessed. Six colleges were represented by the choices (1= CAS, 2 = CBM, 3 = CCJE, 4 = COE, 5 = COT, 6 = MEP).

The third variable measured by the survey reflected six (6) statements within the instrument used on how the respondents perceived the use of technology in their studies. As a result, a 0.98 internal consistency alpha coefficient was obtained for it.

The survey's last variable focused on how many of the learners' perceptions of how technology is used to enhance learning in the classroom had an influence. Participants will respond to fifteen (15) statements that have been given. The total influence of perception on students' use of technology in the classroom was calculated to have an internal consistency alpha coefficient of 0.91.

Analytic Approach

The two-way factorial MANOVA was used to examine the data in this study. The unique and combined effects of the two independent variables of department and gender, on the two independent variables of perception of technology used in studies, and the degree of influence of perception of technology usage in the classroom were examined by this multivariate factorial design.

On both a multivariate and single variable level, the statistical process was utilized to ascertain correlations between the variables. A Wilk Lambda value indicated the independent factors' statistically significant impacts on the dependent variables, and a one-way analysis of variance (ANOVA) identified the locations of each dependent variable's statistically significant main effects separately. To assess statistical significance, a 0.95 confidence level was utilized.

3. RESULTS AND DISCUSSIONS

According to Table 2, women were more favorably seen in perceptions 1, 2, 5, and 6 on the use of technology in their studies. It was discovered that technology aids in deep topic comprehension makes work easier, enhances information management abilities generally, and enhances long-term career chances. However, men are more likely to say that technology inspires them to investigate a wide range of previously unexplored issues and makes it simple for them to interact with others both inside and outside of the college.

This finding is in line with the finding of research by Shuell, Thomas and Farber, Stacey [3], which found that women evaluated the use of technology for learning and classroom teaching somewhat lower than their male colleagues.

Table 3 demonstrates that, in terms of students' perceptions of technology in their studies, the College of Arts and Sciences department, which had the fewest responses overall, had the highest mean among the other departments. It demonstrated that when it came to perceptions 1, 2, 4, and 5, the CAS department had the greatest mean. The highest mean in terms of perceptions 3 and 4 belonged to a total of 40 respondents from the College of Criminal Justice and Education (CCJE). Briz-Ponce, Pereira, Carvalho, Juanes-Méndez & García-Peñalvo [4] found a strong attitude of university students toward the use and recommendation of mobile technology.

Timothy Teo and Mingming Zhou's [5] study "The Influence of Teachers' Conceptions of Teaching and Learning on Their Technology Acceptance" discovered that teachers' views on teaching, whether constructivist or conventional, had a big impact on how they accept technology.

Table 2: Multivariate Analysis of Gender and Student's Perception of Technology

Terception of Teenhology							
Percept Gender	ion	Mean	Std. Deviation	Ν			
Perception1:	Male	2.64	1.885	131			
Technology helps understand the	Female	2.93	1.987	135			
subject deeply	Total Male	2.79 2.62	1.939 1.895	266 131			
Perception2: Completing work	Female	2.7	1.955	135			
more convenient	Total	2.66	1.923	266			
Perception3:	Male	1.82	0.846	131			
Motivates to explore more	Female	1.59	0.786	135			
topics	Total	1.7	0.823	266			
Perception4:	Male	1.86	0.926	131			
Collaborate with others more	Female	1.6	0.613	135			
easily	Total	1.73	0.793	266			
Perception5:	Male	2.57	1.902	131			
Improve IT/Information	Female	2.76	1.972	135			
management skills in general	Total	2.67	1.936	266			
Perception6:	Male	2.62	1.891	131			
Improve career/employme	Female	2.82	1.988	135			
nt prospects in the long term	Total	2.72	1.94	266			

The study demonstrated that incorporating these ideas into technology acceptance models (TAM) led to a more sophisticated comprehension. However, no moderating effects were detected from demographic characteristics including age, gender, or teaching experience. The study emphasized how crucial it is to match instructional philosophies with technology use to successfully integrate it into the classroom.

Table 3: Multivariate analysis of Department and Student's Perception of Technology

Perception Department		Mean	Std. Deviation	Ν
.	CAS	3.24	2.026	25
	CBM	2.98	2	86
Perception1: Technology	CCJE	2.63	1.821	40
helps understand the	COE	3	2.032	32
subject deeply	COT	2.38	1.875	34
	MEP	2.49	1.85	49
	Total	2.79	1.939	266
	CAS	3.08	2.04	25
	CBM	2.7	1.977	86
	CCJE	2.58	1.767	40
Perception2: Completing work more convenient	COE	2.75	2.016	32
work more convenient	COT	2.24	1.843	34
	MEP	2.69	1.917	49
	Total	2.66	1.923	266
	CAS	1.48	0.51	25
	CBM	1.48	0.589	86
	CCJE	2.3	1.265	40
Perception3: Motivates to explore more topics	COE	1.44	0.504	32
to explore more topics	COT	1.76	0.496	34
	MEP	1.86	0.935	49
	Total	1.7	0.823	266
Perception4: Collaborate	CAS	1.56	0.507	25
with others more easily	CBM	1.57	0.66	86

Sci-Int.(Lahore),36(6),619-627,2024

ISSN 1013-5316;CODEN:SINTE 8

	CCJE	2.05	1.037	40
	COE	1.5	0.508	32
	COT	1.82	0.716	34
	MEP	1.92	0.975	49
	Total	1.73	0.793	266
	CAS	2.96	2.01	25
	CBM	2.86	1.989	86
Perception5: Improve	CCJE	2.15	1.657	40
IT/Information management skills in	COE	2.91	2.006	32
general	COT	2.35	1.937	34
Selleral	MEP	2.65	1.953	49
	Total	2.67	1.936	266
	CAS	3.32	1.973	25
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	86		
Perception6: Improve	CCJE	2.83	1.933	40
career/employment prospects in the long	COE	1.91	1.673	32
term	COT	2.24	1.843	34
term	MEP	2.94	1.952	49
	Total	2.72	1.94	266

The extent to which learners' perception of the usage of technology in the classroom is impacted by male respondents in Table 4. As a result, it has the greatest mean in terms of how much assertions 1, 3, 5, 6, 7, 8, 9, 12, 13 and 14 were impacted by perceptions. On the other hand, there were only three extent of perceptions statements --- statements 2, 10, and 11 where female respondents had the highest mean.

UNESCO [6], a branch of the United Nations Educational, Scientific and Cultural Organization, demonstrates how technology may significantly improve learning results for students. Thus, Jeng, Wu, Huang, Tan & Yang [7] added that Mobile devices and educational applications should not complicate the learning process, but rather facilitate student learning. Furthermore, Sezer [8] also revealed that gender factors and academic success significantly affect student attitudes toward learning and technology.

Table 4: Multivariate analysis of Gender and the extent of the impact of learners' perception of technology used in the classroom

Gender		Mean	Std. Deviation	Ν
Extent1: More actively involved	Male	3.11	1.345	131
in courses that use technology	Female	2.87	1.254	135
use teennorogy	Total	2.99	1.303	266
Extent2: Likely to skip classes when	Male	2.97	1.353	131
materials from	Female	3.1	1.281	135
course are available online	Total	3.03	1.316	266
Extent3: Adequately	Male	3.15	1.515	131
prepared to use	Female	2.94	1.439	135
the technology needed in the	Total			
course		3.04	1.478	266
Extent4: Technology helps	Male	2.54	1.546	131
feel connected to	Female	2.03	1.126	135
what's going on at the college	Total	2.28	1.371	266
Extent5: Technology	Male	2.36	1.425	131
makes feel	Female	2.03	1.146	135
connected to other students	Total	2.19	1.299	266

DERIORATE 0				021
Extent6:	Male	2.55	1.49	131
Technology	Female			
makes feel connected to		2.24	1.237	135
teachers	Total	2.39	1.373	266
Extent7:	Male			
Technology		3.18	1.552	131
interferes with the	Female	2.98	1.489	135
ability to	Total			
concentrate and				
think deeply		3.08	1.52	266
Extent8:	Male	2.53	1.526	131
Advances may increasingly	Female	2.52	1.434	135
invade privacy	Total			
1 5		2.52	1.477	266
Extent9:	Male	2.25	1.355	131
Concerned about cyber security	Female	2.14	1.045	135
(Password	Total	2.14	1.045	135
protection and	Total			
hacking)		2.2	1.207	266
Extent10: In-class	Male	2.20		
use of mobile	F 1	3.39	1.615	131
devices is	Female	3.54	1.465	135
distracting to	Total	2.47	1.54	2
students Extent11: In-	Male	3.47	1.54	266
class use of	Male	2.69	1.555	131
mobile devices is	Female	2.94	1.592	135
distracting to	Total		1072	100
teachers		2.82	1.576	266
Extent12: Use of	Male	2.63	1.48	131
tablets/laptops in	Female			
class improves		2.62	1.44	135
engagement with the content and	Total			
class		2.62	1.457	266
Extent13:	Male	2.62	1.48	131
Multitasking with	Female			
technology		2.6	1.452	135
sometimes	Total			
prevents		2.61	1.450	0.55
concentration	M.1	2.61	1.463	266
Extent14: Students like to	Male	2.53	1.536	131
keep academic	Female	2.31	1.357	135
life and social life	Total			
separate		2.42	1.45	266
Extent15:	Male	2.63	1.575	131
Students are	Female			
hoping teachers to		2.59	1.452	135
integrate	Total			
technology into teachings		2.61	1 511	266
teachings		2.01	1.511	200

The CCJE college had the greatest mean in terms of statements 1, 4, 6, 9, 11, 12, 13, 14, and 15. The impact of learners' perspectives under assertions 2 and 3 had the greatest mean in the College of Arts and Sciences department. However, when it came to the degree to which technology was perceived as impeding students' capacity to focus and think deeply about the subject, the College of Business and Management and Maritime Education Program have the same average. On the other hand, students from CAS and the College of Education (COE) responded to the interruptions in class caused by the use of mobile devices the most.

Rupak, Greg, Jei & Ben [9] found that technology had a positive and significant relationship between perceived

621

usefulness and perceived ease of use, and both elements have a positive effect on behavioral intention. In short, attitude plays an important role in persuading student intention to use online learning [10] because attitude is a vital component in the use of technology [11].

Table 5: Multivariate analysis of the Department and the extent of the impact of learners' perception of technology used in the classroom

Classroom Std.								
Department		Mean	Deviation	Ν				
Extent1: More	CAS	3	1.414	25				
actively involved in	CAS CBM	3 2.91	1.414	25 86				
courses that use								
technology	CCJE	3.38	1.334	40				
teennology	COE	2.72	1.114	32				
	COT	2.62	1.231	34				
	MEP	3.27	1.396	49				
	Total	2.99	1.303	266				
Extent2: Likely to	CAS	3.44	1.53	25				
skip classes when	CBM	3.09	1.289	86				
materials from	CCJE	2.85	1.001	40				
course are available online	COE	2.84	1.11	32				
omme	COT	2.65	1.178	34				
	MEP	3.27	1.604	49				
	Total	3.03	1.316	266				
Extent3:	CAS	3.44	1.758	25				
Adequately	CBM	2.93	1.379	86				
prepared to use the	CCJE	3.08	1.421	40				
technology needed	COE	3.28	1.727	32				
in the course	COT	2.71	1.36	34				
	MEP	3.08	1.441	49				
	Total	3.04	1.478	266				
Extent4:	CAS	2.12	1.166	25				
Technology helps	CBM	2.07	1.186	86				
feel connected to	CCJE	2.43	1.375	40				
what's going on at	COE	1.88	1.129	32				
the college	COL	2.38	1.349	32				
	MEP	2.38	1.752	49				
T. 4	Total	2.28	1.371	266 25				
Extent5:	CAS	2.24	1.3					
Technology makes	CBM	2.03	1.173	86				
feel connected to other students	CCJE	2.25	1.256	40				
other students	COE	2	1.244	32				
	COT	2.21	1.175	34				
	MEP	2.51	1.622	49				
	Total	2.19	1.299	266				
Extent6:	CAS	2.08	1.187	25				
Technology makes	CBM	2.12	1.132	86				
feel connected to	CCJE	2.8	1.506	40				
teachers	COE	2.31	1.424	32				
	COT	2.44	1.375	34				
	MEP	2.73	1.591	49				
	Total	2.39	1.373	266				
Extent7:	CAS	3.04	1.925	25				
Technology	CBM	3.16	1.586	86				
interferes with the	CCJE	3.1	1.336	40				
ability to	COE	3.03	1.448	32				
concentrate and	COL	2.76	1.415	34				
think deeply	MEP	3.16	1.413	34 49				
	Total	3.08	1.477	49 266				
Extent8: Advances	CAS	2.56	1.52	200				
may increasingly								
invade privacy	CBM	2.52	1.477	86 40				
invade privacy	CCJE	2.7	1.488	40				
	COE	2.31	1.378	32				
	COT	2.26	1.238	34				
	MEP	2.67	1.676	49				
	Total	2.52	1.477	266				
Extent9: Concerned	CAS	2.04	1.098	25				
about cyber	CBM	1.99	0.964	86				
security (Password	CCJE	2.65	1.733	40				

PEN:SINTE 8	Sci	-Int.(Lanor	e),30(0),019-	627,2024
protection and	COE	2.22	1.184	32
hacking)	COT	2.03	0.758	34
<u> </u>	MEP	2.37	1.318	49
	Total	2.2	1.207	266
Extent10: In-class	CAS	3.72	1.696	25
use of mobile	CBM	3.45	1.531	86
devices is	CCJE	3.63	1.334	40
distracting to	COE	3.72	1.42	32
students	COT	3.15	1.726	34
	MEP	3.29	1.581	49
	Total	3.47	1.54	266
Extent11: In-class	CAS	2.64	1.551	200
use of mobile	CBM	2.04	1.551	23 86
devices is				40
distracting to	CCJE	3.33	1.67	-
teachers	COE	3.03	1.616	32
teachers	COT	2.15	1.077	34
	MEP	2.98	1.664	49
E : 12 H 6	Total	2.82	1.576	266
Extent12: Use of	CAS	2.32	1.249	25
tablets/laptops in	CBM	2.49	1.387	86
class improves	CCJE	3.3	1.556	40
engagement with	COE	2.59	1.456	32
the content and class	COT	2.32	1.273	34
class	MEP	2.69	1.597	49
	Total	2.62	1.457	266
Extent13:	CAS	2.36	1.319	25
Multitasking with	CBM	2.5	1.445	86
technology	CCJE	3.1	1.482	40
sometimes prevents	COE	2.47	1.414	32
concentration	COT	2.26	1.31	34
	MEP	2.86	1.607	49
	Total	2.61	1.463	266
Extent14: Students	CAS	2	1.225	25
like to keep	CBM	2.19	1.324	86
academic life and	CCJE	2.9	1.614	40
social life separate	COE	2.56	1.48	32
	COT	2.24	1.208	34
	MEP	2.69	1.648	49
	Total	2.42	1.45	266
Extent15: Students	CAS	2.48	1.418	25
are hoping teachers	CBM	2.56	1.468	86
to integrate	CCJE	3.15	1.578	40
technology into	COE	2.22	1.289	32
teachings	COT	2.47	1.482	34
-	MEP	2.67	1.676	49
	Total	2.61	1.511	266

Using a multivariate analysis of variance (MANOVA), a recent study on the influence of technology integration in the classroom on student perceptions showed substantial findings. The study examined the perceptions of students from various departments about the effectiveness of various forms of technology-based learning activities. It showed that depending on the kind of activity students engaged in—such as internships, case studies, projects, and videos—their learning results differed considerably. For example, students believed that industry-related experiences and internships were the best ways to improve their learning, especially when it came to gaining practical skills. This implies that incorporating practical, real-world technological applications might greatly enhance learning results and student engagement.

The study demonstrated how technology, such as online resources and audiovisual materials, may adapt to different learning requirements and styles, providing inclusive, individualized, and accessible learning opportunities. To minimize the negative implications of an over-reliance on

Sci-Int.(Lahore),36(6),619-627,2024

technology, like as diversions and data privacy issues, it also underlined the necessity of careful planning and sufficient teacher preparation [12].

The multivariate main effect of gender is presented in Table 6. The analysis of this variable resulted in a Wilk's Lambda value = .879, which is subsequently translated into an *F* value of 1.596 and evaluated at degrees of freedom of 21 for between two groups hypothesis and error within groups of 244. This *F* (p=0.05) was significant (p<0.5), indicating differences between the two genders and the dependent variables. The partial eta-squared value showed that this effect accounts for 12% of the total variance.

 Table 6: Multivariate main effect of Gender via Wilks' Lambda

 Multivariate Tests^a

Effect		Value	F	Hypothesis df	Error df	Sig.	Partial Eta Squared
Inter	Pillai's						
cept	Trace						
		0.94	208.				
		7	865 ^b	21	244	0	0.947
	Wilks'	0.05	208.				
	Lambda	3	865 ^b	21	244	0	0.947
	Hotellin	17.9	208.				
	g's Trace	76	865 ^b	21	244	0	0.947
	Roy's						
	Largest	17.9	208.				
	Root	76	865 ^b	21	244	0	0.947
Gend	Pillai's						
er	Trace	0.12	1.59				
		1	6 ^b	21	244	0.051	0.121
	Wilks'	0.87	1.59				
	Lambda	9	6 ^b	21	244	0.051	0.121
	Hotellin	0.40	1 50				
	g's Trace	0.13	1.59	01	244	0.051	0.101
	D I	7	6 ^b	21	244	0.051	0.121
	Roy's	0.12	1.50				
	Largest	0.13	1.59	01	214	0.051	0 101
	Root	7	6 ^b	21	244	0.051	0.121

Table 7 displays the Department's multivariate main impact. A Wilk's Lambda value of .589 was obtained from the study of this variable, which was then converted to an *F* value of 1.284 and assessed at 105 degrees of freedom for the error between 6 groups and 1178 degrees of freedom for the error within groups. This F(p=0.03) was significant (p<0.05), demonstrating differences in the dependent variables and the six departments. According to the partial eta-squared value, this impact was responsible for 10% of the overall variation. Interaction of Gender and Departments (Independent Variables of the Study)

The combined multivariate effect of (gender*Department) was examined and depicted in Table 8. This interaction produced a Wilk's Lambda value of .635, which was translated into an *F* value of 1.348 and evaluated with degrees of freedom 84 and 931 for between and within groups of degrees of freedom. This F(p=0.2) was significant (p<0.5), demonstrating differences in the independent variables. According to the partial eta-squared value, this impact was responsible for 11% of the overall variation.

 Table 7: Multivariate main effect of Department via

 Wilks' Lambda Multivariate Tests^a

Effect		Value	Ŧ	Hypothesis df	Error df	Sig.	Partial Eta Squared
Interc	Pillai's		tor took		• • •		
ept	Trace Wilks'	0.942	185.499 ^b	21	240	0	0.942
	Lambda	0.058	185.499 ^b	21	240	0	0.942
	Hotelling	16.23					
	's Trace	1	185.499 ^b	21	240	0	0.942
	Roy's						
	Largest	16.23					
	Root	1	185.499 ^b	21	240	0	0.942
Depa	Pillai's					0.03	
rtmen	Trace	0.498	1.285	105	1220	3	0.1
t	Wilks'La				1178.	0.03	
	mbda	0.589	1.284	105	197	3	0.101
	Hotelling					0.03	
	's Trace	0.565	1.283	105	1192	3	0.102
	Roy's						
	Largest					0.00	
	Root	0.185	2.155 ^c	21	244	3	0.156

Table 8: Multivariate main Effect of Gender and Development via Wilks' Lambda Multivariate Tests^a

Effect		Value	لع ا	Hypothesis df	Error df	Sig.	Partial Eta Squared
Intercept	Pillai's Trace						
	Wilks' Lambda	0.889	90.068 ^b	21	235	0	0.889
	Hotelling 's Trace	0.111	90.068 ^b	21	235	0	0.889
	Roy's Largest Root	8.049	90.068 ^b	21	235	0	0.889
Departm ent	Pillai's Trace	8.049	90.068 ^b	21	235	0	0.889
	Wilks' Lambda	0.416	1.033	105	1195	0.394	0.083
	Hotelling 's Trace	0.643	1.037	105	1153.8	0.385	0.084
	Roy's Largest Root	0.468	1.041	105	1167	0.375	0.086
Gender	Pillai's Trace	0.183	2.078 ^c	21	239	0.005	0.154
	Wilks' Lambda	0.092	1.136 ^b	21	235	0.311	0.092
	Hotelling 's Trace	0.908	1.136 ^b	21	235	0.311	0.092
	Roy's Largest Root	0.102	1.136 ^b	21	235	0.311	0.092
		0.102	1.136 ^b	21	235	0.311	0.092

Departm Pillai's ent * Trace Gender

624

Trace						
	0.425	1.346	84	952	0.025	0.10
Wilks'						
Lambda						
	0.635	1.348	84	930.68	0.024	0.10
Hotelling						
's Trace						
	0.485	1.349	84	934	0.024	0.10
Roy's						
Largest						
Root						

 $0.173 1.962^{\circ} 21 238 0.009 0.148$

Use of Analysis of Variance (ANOVA)

ANOVA was used to evaluate how well independent factors interacted with dependent variables.

Tables 9, 10, 11, and 12 depict the Analysis of variance (ANOVA) for the independent variables (Gender and Department) and their interactions with the dependent variables (Student's Perception of technology and the extent of the impact of learner's perception of technology in the classroom). The data in combination with the previous findings reflects that females were shown to score higher on the Student's Perception of technology than men, as shown in Table 9. Thus, the value of p=0.020 was the only one that male perception 3 is statistically significant.

Table 9: Analysis of variance between Gender and Students' Perception of Technology

		Sum of		Mean	_	
		Squares	df	Square	F	Sig.
Perception	Between					
1	Groups	2.089	1	2.089	0.983	0.322
	Within					
	Groups	560.982	264	2.125		
	Total	563.071	265			
Perception	Between					
2	Groups	0.059	1	0.059	0.028	0.867
	Within					
	Groups	553.042	264	2.095		
	Total	553.102	265			
Perception	Between					
3	Groups	11.487	1	11.487	5.476	0.02
	Within					
	Groups	553.795	264	2.098		
	Total	565.282	265			
Perception	Between					
4	Groups	0.501	1	0.501	0.237	0.627
	Within					
	Groups	557.127	264	2.11		
	Total	557.628	265			
Perception	Between					
5	Groups	1.088	1	1.088	0.523	0.47
	Within					
	Groups	548.536	264	2.078		
	Total	549.624	265			
Perception	Between					
6	Groups	2.975	1	2.975	0.794	0.374
	Within					
	Groups	988.878	264	3.746		
	Total	991.853	265			

The results of these kinds of studies typically show that while female students tend to show more varied preferences, – influenced by things like perceived utility and enjoyment of the technology, male students may demonstrate higher levels of engagement with specific technology types, especially in STEM-related fields [13]. This was consistent with broader patterns that suggest female students may give technology higher ratings when it fits their collaborative or social learning preferences.

According to another research, the absence of female role models in tech-related areas may also have an impact on how female students view their technological ability [14]. A gendered experience of technology in the classroom may arise from this view, which may influence their desire to learn more in technologically demanding settings.

Table 10's results combined with earlier ones, revealed that the College of Arts and Sciences was found to have a greater level of student impression of technology use in their studies. Only perceptions 3 and 6 were statistically significant (p=0.042 and 0.043, respectively).

Table 10: Analysis of Variance between Department and Students' Perception of Technology

		Sum of Squares	df	Mean Square	Ч	Sig.
Perception1	Between Groups Within	10.067	5	2.013	0.947	0.451
	Groups Total	553.005	260	2.127		
Perception2	Between	563.071	265			
receptionz	Groups Within	6.074	5	1.215	0.577	0.717
	Groups Total	547.028	260	2.104		
Perception3	Between	553.102	265			
	Groups Within	24.398	5	4.88	2.346	0.042
	Groups Total	540.884	260	2.08		
Perception4	Between	565.282	265			
	Groups Within	9.723	5	1.945	0.923	0.467
	Groups Total	547.905	260	2.107		
Perception5	Between	557.628	265			
	Groups Within	12.79	5	2.558	1.239	0.291
	Groups Total	536.834	260	2.065		
Perception6	Between	549.624	265			
•	Groups Within	42.535	5	8.507	2.33	0.043
	Groups Total	949.318	260	3.651		
	10101	991.853	265			

Comparing male and female respondents, Table 11 showed that male respondents were more concerned about how students would perceive the usage of technology in the classroom. The outcomes were the same as it was in the earlier tables. Thus, only extent statements 4 and 6 (p=0.002 and 0.039) were statistically significant.

Table 11: Analysis of Variance between Gender and the Extent of the Impact of Learners' perception of technology used in the classroom

		Sum of Squares	df	Mean Square	F	Sig.
Extent1	Between					
	Groups	3.843	1	3.843	2.27	0.133
	Within					
	Groups	446.142	264	1.69		
	Total					
		449.985	265			
Extent2	Between					
	Groups	1.069	1	1.069	0.62	0.433
	Within					
	Groups	457.626	264	1.733		
	Total					
		458.695	265			

November-December

Extent3	Lahore),36 Between	(0),017 02	,2021		10011	1013-5310
Extents	Groups Within	2.775	1	2.775	1.27	0.26
	Groups	575.77	264	2.181		
Extent4	Total	578.545	265			
Extent4	Between Groups Within	17.453	1	17.453	9.59	0.002
	Groups Total	480.401	264	1.82		
Extent5	Between	497.853	265			
Extents	Groups Within	7.203	1	7.203	4.32	0.039
	Groups Total	440.019	264	1.667		
E i ií	D (447.222	265			
Extent6	Between Groups Within	6.192	1	6.192	3.31	0.07
	Groups Total	493.361	264	1.869		
Extent7	Between	499.553	265			
Linteint	Groups Within	2.601	1	2.601	1.13	0.29
	Groups Total	609.895	264	2.31		
Extent8	Between	612.496	265			
Linteinto	Groups Within	0.004	1	0.004	0	0.964
	Groups Total	578.36	264	2.191		
Extent9		578.365	265			
Extent9	Between Groups Within	0.822	1	0.822	0.56	0.454
	Groups Total	385.013	264	1.458		
Extent10	Between	385.835	265			
	Groups Within	1.525	1	1.525	0.64	0.424
	Groups Total	626.671	264	2.374		
Extent11	Between	628.195	265			
Zatemi I	Groups Within	4.28	1	4.28	1.73	0.19
	Groups Total	653.694	264	2.476		
		657.974	265			
Extent12	Between Groups Within	0.001	1	0.001	0	0.983
	Groups	562.405	264	2.13		

Combining Table 12 with the above data revealed that CCJE was found to have a greater mean in terms of the magnitude of the influence on students' perceptions of technology employed in the classroom. Thus, Statements under Extent 4 (p=0.019), Extent 6 (p=0.41), Extent 11 (p=0.033), Extent 12 (0.033), Extent 12 (p=0.033) and Extent 14 (P=0.043) are statistically significant.

Table 12: Analysis of Variance between Departments and the Extent of the Impact of Learners' perception of technology used

	Groups Within Groups	7.203 440.019	1 264	7.203 1.667	4.32	0.039	Extent of the Impact of Learners' perception of technology in the classroom				hnology use		
Extent	Total	440.019	265	1.007					Sum of Squares	df	Mean Square	F	Sig.
Extent6	Between Groups Within	6.192	1	6.192	3.31	0.07	Extent1	Between Groups	17.305	5	3.461	2.08	0.068
	Groups Total	493.361	264	1.869				Within Groups	432.68	260	1.664		
Extent7	Between	499.553	265					Total	449.985	265			
Groups Within Groups Total	2.601	1	2.601	1.13	0.29	Extent2	Between Groups Within	14.645	5	2.929	1.715	0.131	
	-	609.895	264	2.31				Groups	444.05	260	1.708		
Extent8	Between	612.496	265				Extent3	Total Between	458.695	265			
	Groups Within	0.004	1	0.004	0	0.964	Extents	Groups Within	10.828	5	2.166	0.992	0.423
	Groups Total	578.36	264	2.191				Groups Total	567.717	260	2.184		
Extent9	Between Groups	578.365	265	0.822	0.56	0.454	Extent4	Between	578.545	265			
	Within Groups	0.822	1	0.822	0.56	0.454		Groups Within	24.981	5	4.996	2.747	0.019
	Total	385.013 385.835	264 265	1.458				Groups Total	472.873	260	1.819		
Extent10	Between Groups	1.525	1	1.525	0.64	0.424	Extent5	Between Groups	497.853 8.463	265 5	1.693	1.003	0.416
Within Groups	626.671	264	2.374				Within Groups	438.759	260	1.688	1.005	0.416	
Extent11	Total Between	628.195	265					Total	447.222	265	1.000		
Extent1	Groups Within	4.28	1	4.28	1.73	0.19	Extent6	Between Groups	21.667	5	4.333	2.358	0.041
	Groups Total	653.694	264	2.476				Within Groups Total	477.886	260	1.838		
Extent12	Between Groups	657.974 0.001	265 1	0.001	0	0.983	Extent7	Between	499.553	265			
	Within Groups	562.405	264	2.13	0	0.985		Groups Within	4.435	5	0.887	0.379	0.863
	Total	562.405	265	2.15				Groups Total	608.061	260	2.339		
Extent13	Between Groups	0.022	1	0.022	0.01	0.919	Extent8	Between Groups	612.496 6.083	265 5	1.217	0.553	0.736
	Within Groups	567.316	264	2.149				Within Groups	572.282	260	2.201	0.555	0.750
Extent14	Total Between	567.338	265					Total	578.365	265	2.201		
	Groups Within	3.313	1	3.313	1.58	0.21	Extent9	Between Groups	14.959	5	2.992	2.097	0.066
	Groups Total	553.529	264	2.097				Within Groups Total	370.875	260	1.426		
Extent15	Between Groups	556.842 0.074	265 1	0.074	0.03	0.858	Extent10	Between	385.835	265			
	Within Groups	605.264	264	2.293	0.05	0.000		Groups Within	9.733	5	1.947	0.818	0.537
	Total	605.338	265					Groups Total	618.462 628.195	260 265	2.379		
							Extent11	Between Groups	29.923	265 5	5.985	2.478	0.033
									27.723	5	5.705	2.770	0.055

	Within Groups	628.05	260	2.416		
	Total	657.974	265			
Extent12	Between					
	Groups	25.51	5	5.102	2.471	0.033
	Within					
	Groups	536.896	260	2.065		
	Total	562.406	265			
Extent13	Between	302.400	203			
Lincolicity	Groups	19.892	5	3.978	1.889	0.096
	Within	19.092	5	5.770	1.007	0.090
	Groups	547.446	260	2.106		
	Total					
		567.338	265			
Extent14	Between					
	Groups	23.818	5	4.764	2.324	0.043
	Within					
	Groups	533.024	260	2.05		
	Total	556.842	265			
Extent15	Between	2201012	200			
	Groups	18.074	5	3.615	1.6	0.16
	Within					
	Groups	587.264	260	2.259		
	Total					
		605.338	265			

4. Results and Discussion

The purpose of this study was to ascertain if there is any correlation between the independent factors of gender and department and the dependent variables of students' technological perception and the magnitude of that perception's influence on learning. The two-way factorial MANOVA findings show that there is a multivariate link between the variables with respect to the research. According to the tables, there was a statistical relationship between the independent variable combination and the variables themselves. However, it is important to account for many factors that contribute to the learning preferences of students on the use of technology. There were some intriguing correlations between students' preferred methods of learning and how they rated various technological applications. These overarching conclusions are supported and clarified by responses to the open-ended questions (Shuel and Farber 2001).

Findings did determine that a significant relationship does exist in the study between independent and dependent variables. In studies, female respondents showed a higher level of perception in the use of technology compared to male respondents, however, this difference between genders was diminished when it came to how much of an influence students' perception of the use of technology in the classroom have, with male respondents that showed higher mean values across the board. Nonetheless, when considering the connection between the department and the two dependent variables. According to the survey, when it comes to students' perceptions of using technology for their studies, the College of Arts and Sciences had the highest mean when compared to other departments. In contrast to other departments, the Colleges of Criminal Justice Education have the highest mean when it comes to the degree to which students' perceptions of the use of technology in the classroom influence their learning.

Lastly, the implementation of a multivariate design provided a rich context for exploring multiple variables associated with the student's perception of technology and the extent of the impact of learners' perception of technology used in the classroom.

5. Acknowledgment

The researchers gratefully acknowledge the support of Dr. Gino Sumalinog of Cebu Normal University and Professor Alnie E. Nemenzo of Surigao del Norte State University for their insightful comments and recommendations, which contributed to elevating the manuscript's quality.

REFERENCES

- [1] Eden, N. C. A., Chisom, N. O. N., & Adeniyi, N. I. S. (2024). Harnessing technology integration in education: Strategies for enhancing learning outcomes and equity. World Journal of Advanced Engineering Technology and Sciences, 11(2), 001–008. https://doi.org/10.30574/wjaets.2024.11.2.0071
- [2] Das, Anup & Mishra, Sanjaya. (2016). Questionnaire on Learner Use of Technology. https://www.researchgate.net/publication/305
 650994_Questionnaire_on_Learner_Use_of_ Technology
- [3] Shuell, Thomas & Farber, Stacey (2001). Students' Perception of Technology Use in College Courses. Journal of Educational Computing Research.<u>https://journals.sagepub.com/doi/abs/10.2190/</u> <u>YWPN-H3DP-15LQ-QNK8</u>
- [4] Briz-Ponce, L., Pereira, A., Carvalho, L., Juanes-Méndez, J. A., &GarcíaPeñalvo, F. J. (2017). Learning with mobile technologies–Students' behavior. Computers in Human Behavior, 72, 612-620. Doi: https://doi. org/10.1016/j.chb.2016.05.027
- [5] Teo, T., & Zhou, M. (2017). The influence of teachers' conceptions of teaching and learning on their technology acceptance. *Interactive Learning Environments*, 25(4), 513-527.
- [6] UNESCO. (2009). La nuevadinámica de la educación superior y la investigació para elcambio social y eldesarrollo. In Conferencia Mundial sobre la Educación Superior. París: UNESCO.
- [7] Jeng, Y. L., Wu, T. T., Huang, Y. M., Tan, Q., & Yang, S. J. (2010). The add-on impact of mobile applications in learning strategies: A review study. Educational Technology & Society, 13(3), 3-11.
- [8] Sezer, B. (2016). Faculty of medicine students' attitudes toward electronic learning and their opinion for an example of distance learning application. Computers in Human Behavior, 55, 932-939. Doi: http:// dx.doi.org/10.1016/j.chb.2015.10.018
- [9] Rupak, R., Greg, R., Jei, Y. & Ben, J. (2014). Technology acceptance model (TAM) and social media usage: an empirical study on Facebook. Journal of Enterprise Information Management, 27(1), 6-30. Doi: https://doi. org/10.1108/JEIM-04-2012-0011
- [10] Hussein, Z. (2017). Leading to Intention: The Role of Attitude in Relation to Technology Acceptance Model in E-Learning. Procedia Computer Science, 105, 159-164. Doi: https://doi.org/10.1016/j.procs.2017.01.196

- [11] Altawallbeh, M., Soon, F., Thiam, W., &Alshourah, S. (2015). Mediating Role of Attitude, Subjective Norm and Perceived Behavioural Control in the Relationships between Their Respective Salient Beliefs and Behavioural Intention to Adopt eLearning among Instructors in Jordanian Universities. Journal of Education and Practice, 6(11), 152-159.
- [12] Bhat, R. (2023). The impact of technology integration on student learning outcomes: A comparative study. International Journal of Social Science, Educational, Economics, Agriculture Research and Technology (IJSET), 2, 592-596.
- [13] Wu, J. H., Tennyson, R. D., & Hsia, T. L. (2010). A study of student satisfaction in a blended e-learning system environment. *Computers & education*, 55(1), 155-164.
- [14] Barker, L. (2006). The state of research on Girls and IT. *Women and Information Technology*.